References |
Top |
REF 1 |
Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator. PLoS One. 2013 Oct 11;8(10):e77643.
|
REF 2 |
Hdm2 is a ubiquitin ligase of Ku70-Akt promotes cell survival by inhibiting Hdm2-dependent Ku70 destabilization. Cell Death Differ. 2009 May;16(5):758-69.
|
REF 3 |
HDM2-binding partners: interaction with translation elongation factor EF1alpha. J Proteome Res. 2007 Apr;6(4):1410-7.
|
REF 4 |
Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012 Dec 21;151(7):1581-94.
|
REF 5 |
Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF. Oncogene. 2015 Mar 26;34(13):1688-97.
|
REF 6 |
Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci. 2008 Dec 15;121(Pt 24):4037-46.
|
REF 7 |
Mutational analysis reveals a dual role of Mdm2 acidic domain in the regulation of p53 stability. FEBS Lett. 2012 Jul 30;586(16):2225-31.
|
REF 8 |
Mdm2 facilitates the association of p53 with the proteasome. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10038-43.
|
REF 9 |
XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J. 2013 Aug 14;32(16):2204-16.
|
REF 10 |
Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol Cancer. 2015 Mar 26;14:65.
|
REF 11 |
Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell. 2009 May 5;15(5):363-75.
|
REF 12 |
MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. J Biol Chem. 2004 May 7;279(19):20035-43.
|
REF 13 |
MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem. 2002 Aug 23;277(34):30838-43.
|
REF 14 |
p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell. 1998 Oct;2(4):405-15.
|
REF 15 |
MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12547-52.
|
REF 16 |
MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005 Sep 21;24(18):3279-90.
|
REF 17 |
Specific inhibition of Mdm2-mediated neddylation by Tip60. Cell Cycle. 2008 Jan 15;7(2):222-31.
|
REF 18 |
Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J. 2002 Apr 2;21(7):1704-12.
|
REF 19 |
PACT is a negative regulator of p53 and essential for cell growth and embryonic development. Proc Natl Acad Sci U S A. 2007 May 8;104(19):7951-6.
|
REF 20 |
Screening E3 substrates using a live phage display library. PLoS One. 2013 Oct 4;8(10):e76622.
|
REF 21 |
Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53. Oncogene. 2007 Jun 21;26(29):4234-42.
|
REF 22 |
The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem. 1997 Dec 5;272(49):30651-61.
|
REF 23 |
Src phosphorylation converts Mdm2 from a ubiquitinating to a neddylating E3 ligase. Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1749-54.
|
REF 24 |
Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 2004 Jul 9;118(1):83-97.
|
REF 25 |
Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53. Mol Biol Rep. 2011 Jan;38(1):229-36.
|
REF 26 |
Identification and characterization of two novel isoforms of Pirh2 ubiquitin ligase that negatively regulate p53 independent of RING finger domains. J Biol Chem. 2009 Aug 14;284(33):21955-70.
|
REF 27 |
MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002 Nov 15;21(22):6236-45.
|
REF 28 |
Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res. 2005 Jan 7;33(1):13-26.
|
REF 29 |
Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol. 2003 Dec;23(23):8902-12.
|
REF 30 |
Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2. Oncogene. 2002 Jul 4;21(29):4498-507.
|
REF 31 |
OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc. Oncogene. 2017 Oct 19;36(42):5852-5860.
|
REF 32 |
An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene. 2000 May 4;19(19):2312-23.
|
REF 33 |
Hispolon promotes MDM2 downregulation through chaperone-mediated autophagy. Biochem Biophys Res Commun. 2010 Jul 16;398(1):26-31.
|
REF 34 |
Expansion of protein interaction maps by phage peptide display using MDM2 as a prototypical conformationally flexible target protein. J Mol Biol. 2004 Mar 12;337(1):129-45.
|
REF 35 |
Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modifier of MDM2 and p21WAF1. J Mol Biol. 2004 Mar 12;337(1):115-28.
|
REF 36 |
Heat shock protein gp96 decreases p53 stability by regulating Mdm2 E3 ligase activity in liver cancer. Cancer Lett. 2015 Apr 10;359(2):325-34.
|
REF 37 |
A comprehensive resource of interacting protein regions for refining human transcription factor networks. PLoS One. 2010 Feb 24;5(2):e9289.
|
REF 38 |
A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2. Cell Signal. 2014 Jun;26(6):1243-57.
|
REF 39 |
Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J. 2002 Jul 15;21(14):3715-27.
|
REF 40 |
HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001 Nov;3(11):973-82.
|
REF 41 |
Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002 Jun 14;277(24):21843-50.
|
REF 42 |
Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network. J Proteome Res. 2014 Dec 5;13(12):5339-46.
|
REF 43 |
Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene. 2010 Jul 15;29(28):4101-12.
|
REF 44 |
Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8247-52.
|
REF 45 |
Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res. 2008 Jul 15;68(14):5669-77.
|
REF 46 |
Mdm2 and PCAF increase Chk2 ubiquitination and degradation independently of their intrinsic E3 ligase activities. Cell Cycle. 2009 Feb 1;8(3):430-7.
|
REF 47 |
HDM2 negatively affects the Chk2-mediated phosphorylation of p53. FEBS Lett. 2005 May 9;579(12):2604-8.
|
REF 48 |
Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem. 2008 Jun 27;283(26):18012-23.
|
REF 49 |
14-3-3 Binding to Pim-phosphorylated Ser166 and Ser186 of human Mdm2--Potential interplay with the PKB/Akt pathway and p14(ARF). FEBS Lett. 2009 Feb 18;583(4):615-20.
|
REF 50 |
The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization. Glia. 2015 Dec;63(12):2327-39.
|
REF 51 |
Multiple scaffolding functions of {beta}-arrestins in the degradation of G protein-coupled receptor kinase 2. J Biol Chem. 2011 Jan 14;286(2):1165-73.
|
REF 52 |
Zipper-interacting protein kinase is involved in regulation of ubiquitination of the androgen receptor, thereby contributing to dynamic transcription complex assembly. Oncogene. 2013 Oct 10;32(41):4981-8.
|
REF 53 |
DNA damage-induced activation of ATM promotes -TRCP-mediated Mdm2 ubiquitination and destruction. Oncotarget. 2012 Sep;3(9):1026-35.
|
REF 54 |
Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell. 2010 Aug 9;18(2):147-59.
|
REF 55 |
HIPK2 inhibits both MDM2 gene and protein by, respectively, p53-dependent and independent regulations. FEBS Lett. 2005 Oct 24;579(25):5473-80.
|
REF 56 |
MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell. 2007 Mar 9;25(5):739-50.
|
REF 57 |
Regulation of the Mdm2-p53 pathway by the ubiquitin E3 ligase MARCH7. EMBO Rep. 2018 Feb;19(2):305-319.
|
REF 58 |
p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem. 2013 Feb 1;288(5):3359-69.
|
REF 59 |
The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 2011 Feb 2;30(3):468-79.
|
REF 60 |
Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 2002 Aug 1;21(15):4037-48.
|
REF 61 |
Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res. 2007 Jun 1;67(11):5513-21.
|
REF 62 |
MDM2 enhances the function of estrogen receptor alpha in human breast cancer cells. Biochem Biophys Res Commun. 2001 Feb 16;281(1):259-65.
|
REF 63 |
An autoregulatory feedback loop between Mdm2 and SHP that fine tunes Mdm2 and SHP stability. FEBS Lett. 2012 Apr 24;586(8):1135-40.
|
REF 64 |
Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition. Biochem Biophys Res Commun. 2012 Jan 13;417(2):744-6.
|
REF 65 |
USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation. Cell Rep. 2016 Mar 22;14(11):2528-37.
|
REF 66 |
Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 2006 Mar;13(3):285-91.
|
REF 67 |
Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol. 2006 Feb;4(2):e27.
|
REF 68 |
Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7. J Mol Biol. 2010 Oct 8;402(5):825-37.
|
REF 69 |
A 60 kd MDM2 isoform is produced by caspase cleavage in non-apoptotic tumor cells. Oncogene. 1998 Nov 19;17(20):2629-36.
|
REF 70 |
MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005 Dec 9;20(5):699-708.
|
REF 71 |
NUMB controls p53 tumour suppressor activity. Nature. 2008 Jan 3;451(7174):76-80.
|
REF 72 |
Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003 Dec 12;302(5652):1972-5.
|
REF 73 |
Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996 Nov 8;274(5289):948-53.
|
REF 74 |
Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells. Nat Methods. 2005 Jun;2(6):427-33.
|
REF 75 |
The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J Biol Chem. 2009 May 8;284(19):12622-32.
|
REF 76 |
Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities. Oncogene. 2007 Nov 15;26(52):7355-62.
|
REF 77 |
Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage. Mol Cell Biol. 2006 Sep;26(18):6819-31.
|
REF 78 |
14-3-3Tau regulates ubiquitin-independent proteasomal degradation of p21, a novel mechanism of p21 downregulation in breast cancer. Mol Cell Biol. 2010 Mar;30(6):1508-27.
|
REF 79 |
MDMX regulation of p53 response to ribosomal stress. EMBO J. 2006 Nov 29;25(23):5614-25.
|
REF 80 |
PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53-MDM2 loop. Nucleic Acids Res. 2011 Mar;39(6):2234-48.
|
REF 81 |
5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem. 2007 Mar 16;282(11):8052-9.
|
REF 82 |
Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem. 2011 Nov 4;286(44):38264-74.
|
REF 83 |
Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 2004 Oct 22;279(43):44475-82.
|
REF 84 |
Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol. 2011 Oct 11;7:536.
|
REF 85 |
Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Nucleic Acids Res. 2010 Oct;38(19):6544-54.
|
REF 86 |
Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell. 2008 Oct 24;32(2):180-9.
|
REF 87 |
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20467-72.
|
REF 88 |
Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol. 2004 Sep;24(17):7654-68.
|
REF 89 |
The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994 Nov;14(11):7414-20.
|
REF 90 |
Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene. 2007 Aug 2;26(35):5029-37.
|
REF 91 |
Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One. 2013 Jul 16;8(7):e68667.
|
REF 92 |
Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe. 2014 Apr 9;15(4):494-505.
|
REF 93 |
DNA-binding regulates site-specific ubiquitination of IRF-1. Biochem J. 2013 Feb 1;449(3):707-17.
|
REF 94 |
Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1 stabilization/nuclear translocation in bone metastasis from breast carcinoma. Exp Cell Res. 2015 Jan 15;330(2):287-99.
|
REF 95 |
Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 2000 Jan 1;14(1):34-44.
|
REF 96 |
Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem. 2003 Apr 18;278(16):13595-8.
|
REF 97 |
TIP60 represses transcriptional activity of p73beta via an MDM2-bridged ternary complex. J Biol Chem. 2008 Jul 18;283(29):20077-86.
|
REF 98 |
MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function. Oncotarget. 2015 Aug 28;6(25):21479-92.
|
REF 99 |
MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol. 1999 May;19(5):3257-66.
|
REF 100 |
A novel mechanism of crosstalk between the p53 and NFB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle. 2013 Aug 1;12(15):2479-92.
|
REF 101 |
Coordinate regulation of estrogen receptor degradation by Mdm2 and CREB-binding protein in response to growth signals. Oncogene. 2013 Jan 3;32(1):117-26.
|
REF 102 |
Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett. 2004 Mar 12;561(1-3):195-201.
|
REF 103 |
Notch1 binds and induces degradation of Snail in hepatocellular carcinoma. BMC Biol. 2011 Nov 30;9:83.
|
REF 104 |
Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J. 2013 Mar 15;450(3):523-36.
|
REF 105 |
Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene. 2005 Nov 3;24(48):7238-47.
|
REF 106 |
ATP stimulates MDM2-mediated inhibition of the DNA-binding function of E2F1. FEBS J. 2008 Oct;275(19):4875-86.
|
REF 107 |
Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Mol Cell. 2016 Jun 16;62(6):890-902.
|
REF 108 |
MDM2 mediates ubiquitination and degradation of activating transcription factor 3. J Biol Chem. 2010 Aug 27;285(35):26908-15.
|
REF 109 |
Oxidative stress-dependent regulation of Forkhead box O4 activity by nemo-like kinase. Antioxid Redox Signal. 2011 Feb 15;14(4):563-78.
|
REF 110 |
A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity. PLoS One. 2015 Dec 11;10(12):e0144753.
|
REF 111 |
Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2. Biochem J. 2009 Mar 15;418(3):575-85.
|
REF 112 |
MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. J Cell Sci. 2010 Jul 15;123(Pt 14):2423-33.
|
REF 113 |
Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle. 2010 Nov 15;9(22):4584-91.
|
REF 114 |
MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem. 2009 May 22;284(21):13987-4000.
|
REF 115 |
Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem. 2011 Jul 1;286(26):22730-41.
|
REF 116 |
Regulation of p53 level by UBE4B in breast cancer. PLoS One. 2014 Feb 26;9(2):e90154.
|
REF 117 |
UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat Med. 2011 Mar;17(3):347-55.
|
REF 118 |
OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One. 2013 Oct 15;8(10):e77682.
|
REF 119 |
The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell. 2005 Jul;8(1):75-87.
|
REF 120 |
MDMX contains an autoinhibitory sequence element. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17814-9.
|
REF 121 |
Reciprocal repression between P53 and TCTP. Nat Med. 2011 Dec 11;18(1):91-9.
|
REF 122 |
Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell. 2009 Aug 14;35(3):316-26.
|
REF 123 |
Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 2008 May;15(5):841-8.
|
REF 124 |
Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy. Cancer Res. 2015 Nov 1;75(21):4560-72.
|
REF 125 |
HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell. 2014 May 8;54(3):500-11.
|
REF 126 |
Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem. 2003 Feb 21;278(8):6363-70.
|
REF 127 |
Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001 Nov 9;294(5545):1307-13.
|
REF 128 |
Intact MDM2 E3 ligase activity is required for the cytosolic localization and function of -arrestin2. Mol Biol Cell. 2011 May;22(9):1608-16.
|
REF 129 |
MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem. 2004 Apr 16;279(16):16000-6.
|
REF 130 |
MDM2 promotes proteasomal degradation of p21Waf1 via a conformation change. J Biol Chem. 2010 Jun 11;285(24):18407-14.
|
REF 131 |
Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem Biophys Res Commun. 2003 Mar 21;302(4):869-72.
|
REF 132 |
MDM2 interacts with and downregulates a sarcomeric protein, TCAP. Biochem Biophys Res Commun. 2006 Jun 23;345(1):355-61.
|
REF 133 |
Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene. 2006 Nov 23;25(55):7274-88.
|
REF 134 |
A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. J Biol Chem. 2000 Oct 13;275(41):31883-90.
|
REF 135 |
An iTRAQ proteomics screen reveals the effects of the MDM2 binding ligand Nutlin-3 on cellular proteostasis. J Proteome Res. 2012 Nov 2;11(11):5464-78.
|
REF 136 |
Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell. 2004 May;5(5):465-75.
|
REF 137 |
Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem. 2003 Mar 28;278(13):11648-53.
|
REF 138 |
MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006 Oct;26(19):7269-82.
|
REF 139 |
The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity. Biochem Biophys Res Commun. 2007 Nov 23;363(3):879-84.
|
REF 140 |
Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem. 2005 May 13;280(19):18771-81.
|
REF 141 |
BMK1 is involved in the regulation of p53 through disrupting the PML-MDM2 interaction. Oncogene. 2013 Jun 27;32(26):3156-64.
|
REF 142 |
Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci. 2003 Oct 1;116(Pt 19):3917-25.
|
REF 143 |
p14ARF interacts with DAXX: effects on HDM2 and p53. Cell Cycle. 2008 Jun 15;7(12):1836-50.
|
REF 144 |
Negative regulation of p53 functions by Daxx and the involvement of MDM2. J Biol Chem. 2004 Nov 26;279(48):50566-79.
|
REF 145 |
MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Mol Cell. 2016 Jan 7;61(1):68-83.
|