Therapeutic Targets Database

QSAR Model

Target Name	3-Hydroxy-anthranilic acid dioxygenase (3-HAO)
Target TTD ID	TTDR01339

Target Species	Human
Target Location	Brain
Chemical Type	4,5-, 4,6-disubstituted and 4,5,6-trisubstituted 3-hydroxyanthranilic acid derivatives
Mode of Action	Inhibitor
QSAR Model 1	$pIC_{50}(nM) = -1.0617(\pm 0.0903)^{0}\chi^{\nu} + 1.3269(\pm 0.1779)Ip_{5} + 5.6907$ n=16, Se = 0.3472, R _A ² =0.9150, R ² = 0.9264, R = 0.9625, F = 81.758, p = 4.330 × 10 ⁻⁸
QSAR Model 2	$pIC_{50}(nM) = -1.3468(\pm 0.1846)^{0}\chi^{\nu} + -0.4144(\pm 0.2389)^{1}\chi^{\nu} + 1.4243(\pm 0.1748)Ip_{5} + 6.0887$ n=16, Se = 0.3231, R _A ² =0.9264, R ² = 0.9411, R = 0.9701, F = 63.928
QSAR Model 3	$pIC_{50}(nM) = -1.1512(\pm 0.1084)^{0}\chi^{\nu} + -1.4397(\pm 0.2389)Ip_{5} + 0.2974(\pm 0.2163)Ip_{6} + 6.1027$ n=16, Se = 0.3359, R _A ² =0.9205, R ² = 0.9363, R = 0.9677, F = 58.867
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon <i>n</i> is the number of compounds; Se, standard error of estimation; R_A^2 , adjustable R ² ; R ² , coefficient of determination; R, correlation coefficient; F, F-ratio, <i>p</i> , probability; χ^V , molecular connectivity indices The connectivity index $\chi = \chi$ (G) of a graph G is defined by Randic ² as under: $\chi = \chi(G) = \sum_{ij} [d_i \ d_j]^{-0.5}$ Where d_i is the valence of a vertex i, equal to the number of bonds connected to the atom i, in G, representing the graph of a compound. Meaning of d_j is analogous. In the case of hetero-systems the connectivity is given in terms of valence delta values δ_i^V and δ_j^V of

	atoms <i>i</i> and <i>j</i> and is denoted by χ^{V} . This version of the connectivity index is called the valence
	connectivity index and defined as under:
	$\chi^V = \chi^V(G) = \sum_{ij} [\delta^V_i \ \delta^V_j]^{-0.5}$
	Where the sum is taken over all bonds $i-j$ of the molecule. Valence delta values are given by
	$\delta_i^V = \frac{Z_i^{V-H_i}}{Z_i - Z_j - 1}$
	Where Z_i is the atomic number of atom <i>i</i> , Z_i^V is the number of valence electron of the atom <i>i</i> and H_i is number of hydrogen atoms attached to atom <i>i</i> . δ_i^V values are available in books of Kier and Hall.
Reference	QSAR Study on Inhibition of Brain 3-Hydroxy-anthranilic Acid Dioxygenase (3-HAO):A Molecular Connectivity Approach. <i>Bioorganic & Medicinal Chemistry</i> 9 (2001) 3295–3299