Therapeutic Targets Database

Target Name	MMP-8
Target TTD ID	TTDR01266

Target Species	Human
Chemical Type	5-amino-2-mercapto-1,3,4-thiadiazoles
Mode of Action	Inhibitor
	$\begin{array}{l} \textit{MMP-8} \\ \log(1/K_{\dot{1}}) = [2.96998(\pm 0.987275)] + \textit{I}[0.413534(\pm 0.245314)] + \text{a.nF}[0.272465(\pm 0.063659)] \end{array}$
QSAR	$+{}^{3}K_{\alpha}[0.242856(\pm0.140256)]$
Model 1	$N = 25, r = 0.916, r^2 = 0.840, SEE = 0.170, F = 36.846(F_{3,21} = 4.874),$
	chance = $< 0.001, q^2 = 0.773, S_{PRESS} = 0.203, S_{DEP} = 0.186.$
	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon
	Functional families of the descriptors-Descriptor: definition
	Physical properties -apol: sum of the atomic polarizabilities; bpol: sum of the absolute value of the
	difference between; atomic polarizabilities of all bonded atoms in the molecule; mr: molecular
	refractivity; Weight: molecular weight; TPSA: topological polar surface area; log P(O/W): log of the
Molecular	octanol/water partition coefficient.
Descriptor	Atom counts and bond counts-a_aro: number of aromatic atoms; a_nN: number of nitrogen atoms;
1	a_nO: number of oxygen atoms; a_nF: number of fluorine atoms; a_nS: number of sulfur atoms;
	a_nCl: number of chlorine atoms; a_nBr: number of bromine atoms; b_1rotN: number of rotatable
	single bonds; b_ar: number of aromatic bonds; b_ singlet: number of single bonds; b_double: number
	of double bonds; b_triple: number of triple bonds.
	Kier and Hall connectivity indices and Kier shape indices - ${}^{0}\chi$: atomic connectivity index (order 0);
	$^{0}\chi_{c}$: carbon connectivity index (order 0); $^{1}\chi$: atomic connectivity index (order 1); $^{1}\chi_{c}$: carbon

	connectivity index (order 1); ${}^{0}\chi^{V}$: atomic valence connectivity index (order 0); ${}^{0}\chi^{V}_{c}$: carbon valence
	connectivity index (order 0); ${}^{1}\chi^{V}$: atomic valence connectivity index (order 1); ${}^{1}\chi^{V}_{c}$: carbon valence
	connectivity index (order 1); ¹ K: first kappa shape index; ² K: second kappa shape index; ³ K: third
	kappa shape index; ${}^{1}K_{\alpha}$: first alpha modified shape index; ${}^{2}K_{\alpha}$: second alpha modified shape index;
	${}^{3}K_{\alpha}$: third alpha modified shape index; KierFlex: Kier molecular flexibility index.
	Adjacency and distance matrix descriptors-balabanJ: Balaban's connectivity topological index;
	petitjeanSC: Petitjean graph shape coefficient; weinerPath: Wiener path number; weinerPol: Wiener
	polarity number; zagreb: Zagreb index.
	N is the number of data points, r is correlation coefficient, r^2 is squared correlation coefficient which
	when multiplied by 100 gives explained variance in biological activity, SEE is standard error of
	estimate, F represents Fischer ratio between the variances of calculated and observed activities.
	QSAR analysis of some 5-amino-2-mercapto-1,3,4-thiadiazole based inhibitors of matrix
Reference	metalloproteinases and bacterial collagenase. Bioorganic & Medicinal Chemistry Letters 16 (2006)
	3847–3854

Target Species	Human
Chemical Type	Aryl sulfonyl amido derivatives
Mode of Action	Inhibitor
QSAR Model 1	$log(1/K_i) = 0.977(\pm 0.377)S_S - 3.579(\pm 0.552)S_N + 19.495(\pm 3.296)$ $n = 24, r = 0.957, r_{cv}^2 = 0.90, R_A^2 = 0.91, s = 0.21, F_{2,21} = 113.03(5.78)$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon n is the number of compounds; S_S and S_N , the E-state indices of sulfur and nitrogen atoms; R_A^2 , the square of adjustable correlation coefficient $[R_A^2 = r^2(1 - 1/F)]$; r , correlation coefficient; r_{cv}^2 , the squre of cross-validated correlation coefficient obtained from leave-one-out jackknife procedure; s is the standard deviation; s ,

	A Quantitative Structure-Activity Relationship Study on Some Aryl Sulfonyl Amido and Ureido
Reference	Derivatives Acting as Matrix Metalloproteinase and Clostridium histolyticum Collagenase Inhibitors.
	Letters in Drug Design & Discovery, 2007, 4, 496-501

Target Species	Human
Chemical Type	Aryl sulfonyl ureido derivatives
Mode of Action	Inhibitor
QSAR Model 1	$log(1/K_i) = 0.977(\pm 0.377)S_S - 3.579(\pm 0.552)S_N + 19.495(\pm 3.296)$ $n = 24, r = 0.957, r_{cv}^2 = 0.90, R_A^2 = 0.91, s = 0.21, F_{2,21} = 113.03(5.78)$
Molecular Descriptor	Access the following web-servers to compute molecular descriptors: MoDel and e-dragon n is the number of compounds; S_S and S_N , the E-state indices of sulfur and nitrogen atoms; R_A^2 , the square of adjustable correlation coefficient $[R_A^2 = r^2(1 - 1/F)]$; r , correlation coefficient; r_{cv}^2 , the squre of cross-validated correlation coefficient obtained from leave-one-out jackknife procedure; s is the standard deviation; s , s -ratio; s - s - s -ratio; s - s - s -ratio; s -ra
Reference	A Quantitative Structure-Activity Relationship Study on Some Aryl Sulfonyl Amido and Ureido Derivatives Acting as Matrix Metalloproteinase and <i>Clostridium histolyticum</i> Collagenase Inhibitors. Letters in Drug Design & Discovery, 2007, 4, 496-501